Friday, September 30, 2022
TRUTH AND RECONCILLIATION
Wednesday, September 28, 2022
TRACKING DINOSAURS
This track and many others are at Dinosaur Ridge, a segment of the Dakota Hogback in the Morrison Fossil Area National Natural Landmark located in Jefferson County, Colorado, near the town of Morrison and just west of Denver.
The Dinosaur Ridge area is one of the world's most famous dinosaur fossil localities. Along with the dinosaur bones, you find plant fossils, crocodile bones and a variety of reptile tracks.
In 1877, fossil excavation began at Dinosaur Ridge under the direction of palaeontologist Othniel Charles Marsh. Some of the best-known dinosaurs were found here, including Stegosaurus, Apatosaurus, Diplodocus, and Allosaurus.
In 1973, the area was recognized for its uniqueness as well as its historical and scientific significance when it was designated the Morrison Fossil Area National Natural Landmark by the National Park Service. In 1989, the Friends of Dinosaur Ridge was formed to address increasing concerns regarding the preservation of the site and to offer educational programs on the area's resources.
Visit Dinosaur Ridge Morrison Fossil Area National Natural Landmark
Fancy a trip? You can visit these wonderful tracks, the Dinosaur Ridge Exhibit Hall and walk the trails through the tracks. They have put up helpful interpretive signs that explain the local geology, a volcanic ash bed, trace fossils, paleo-ecology, economic development of coal, oil and clay, and many other geologic and paleontological features.There are two trails and a visitor centre at Dinosaur Ridge. The visitor centre features information on trails and a small gift shop. If you do not pack a lunch, you'll want to visit the Stegosaurus Snack Shack located outside the visitor centre offering coffee, cold drinks, burritos, pretzels and more. It is open from 10am-4pm Mon-Sat and 11am-4pm on Sun from June through August.
Tuesday, September 27, 2022
BC'S FOSSIL BOUNTY RETURNS FOR SEASON TWO
Layers of rock hold fossils, each an interface to our deep past.
Within each fragment, these ancient beings whisper their secrets, share their life experiences, tell us tales of community, how they made a living, who they rubbed shoulders with (or fins, or seedlings...) and convey the essence of a world long embedded in stone.
We are excited to share that BC's Fossil Bounty has been greenlit for Season Two by STORYHIVE Voices 2.0. Join me as we explore the rich fossil bounty of fossil plants, dinosaurs to mighty marine reptiles and the people who unearth them.
Discover British Columbia's violent past — how plate tectonics, volcanoes and glaciers shaped the land and why we find plant fossils along the Kitsilano foreshore and marine fossils beneath False Creek. Learn about the science of geochemistry from a palaeontologist who uses fossil teeth to reconstruct ancient environments.
Meet those who call Vancouver home and use this beautiful base for their mining explorations — opening up BC and communities through partnerships that honour First Nations wisdom, show a commitment to social responsibility & sound environmental practices.
Hear from palaeontologists, geologists, geochemists, science organizations, dinosaur docents, palaeoartists and fossil preparators whose work brings our ancient world to life.
All this goodness is coming to you on TELUS Optik TV in a few short weeks. We had a great time filming BC's Fossil Bounty with some of the loveliest human beings on the planet.
Funding is supported by TELUS STORYHIVE & DINO LAB INC. BC'S FOSSIL BOUNTY — SEASON ONE airs on TELUS Optik TV and the TELUS YouTube Channel to millions of viewers beginning Autumn 2022. SEASON TWO will be shooting in November and air in 2023.
Visit www.fossilhuntress.com to learn more and to hear updates on the project.
Monday, September 26, 2022
EARTH'S FIRST FOUR-LEGGED, AIR-BREATHING VERTEBRATES
Elpistostege watsoni |
In the late 1930s, our understanding of the transition of fish to tetrapods — and the eventual jump to modern vertebrates — took an unexpected leap forward. The evolutionary a'ha came from a single partial fossil skull found on the shores of a riverbank in Eastern Canada.
Meet the Stegocephalian, Elpistostege watsoni, an extinct genus of finned tetrapodomorphs that lived during the Late Givetian to Early Frasnian of the Late Devonian — 382 million years ago.
Elpistostege watsoni — perhaps the sister taxon of all other tetrapods — was first described in 1938 by British palaeontologist and elected Fellow of the Royal Society of London, Thomas Stanley Westoll. Westoll's research interests were wide-ranging. He was a vertebrate palaeontologist and geologist best known for his innovative work on Palaeozoic fishes and their relationships with tetrapods.
As a specialist in early fish, Westoll was asked to interpret that single partial skull roof discovered at the Escuminac Formation in Quebec, Canada. His findings and subsequent publication named Elpistostege watsoni and helped us to better understand the evolution of fishes to tetrapods — four-limbed vertebrates — one of the most important transformations in vertebrate evolution.
Hypotheses of tetrapod origins rely heavily on the anatomy of but a few tetrapod-like fish fossils from the Middle and Late Devonian, 393–359 million years ago. These taxa — known as elpistostegalians — include Panderichthys, Elpistostege and Tiktaalik — none of which had yet to reveal the complete skeletal anatomy of the pectoral fin.
Elpistostege watsoni |
The specimen helped us to understand the origin of the vertebrate hand. Stripped from its encasing stone, it revealed a set of paired fins of Elpistostege containing bones homologous to the phalanges (finger bones) of modern tetrapods and is the most basal tetrapodomorph known to possess them.
Once the phalanges were uncovered, prep work began on the fins. The fins were covered in wee scales and lepidotrichia (fin rays). The work was tiresome, taking more than 2,700 hours of preparation but the results were thrilling.
Origin of the Vertebrate Hand |
Despite this skeletal pattern — which represents the most tetrapod-like arrangement of bones found in a pectoral fin to date blurring the line between fish and land vertebrates — the fin retained lepidotrichia (those wee fin rays) distal to the radials.
This arrangement confirmed an age-old question — showing us for the first time that the origin of phalanges preceded the loss of fin rays, not the other way around.
E. watsoni is very closely related to Tiktaalik roseae found in 2004 in the Canadian Arctic — a tetrapodomorpha species also known as a Choanata. These were advanced forms transitional between fish and the early labyrinthodonts playfully referred to as fishapods — half-fish, half-tetrapod in appearance and limb morphology.
Up to that point, the relationship of limbed vertebrates (tetrapods) to lobe-finned fish (sarcopterygians) was well known, but the origin of major tetrapod features remained obscure for lack of fossils that document the sequence of evolutionary changes — until Tiktaalik. While Tiktaalik is technically a fish, this fellow is as far from fish-like you can be and still be a card-carrying member of the group.
Tiktaalik roseae |
Its fins have thin ray bones for paddling like most fish, but with brawny interior bones that gave Tiktaalik the ability to prop itself up, using his limbs for support. I picture him propped up on one paddle saying, "how you doing?"
Six years after Tiktaalik was discovered by Neil Shubin and team in the ice-covered tundra of the Canadian Arctic on southern Ellesmere Island, a team working the outcrops at Miguasha on the Gaspé Peninsula discovered the only fully specimen of E. watsoni found to date — greatly increasing our knowledge of this finned tantalizingly transitional tetrapodomorph.
E. watsoni fossils are rare — this was the fourth specimen collected in over 130 years of hunting. Charmingly, the specimen was right on our doorstop — extracted but a few feet away from the main stairs descending onto the beach of Miguasha National Park.
L'nu Mi’gmaq First Nations of the Gespe’gewa’gi Region
Miguasha is nestled in the Gaspésie or Gespe’gewa’gi region of Canada — home to the Mi’gmaq First Nations who self-refer as L’nu or Lnu. The word Mi’gmaq or Mi’kmaq means the family or my allies/friends in Mi'kmaw, their native tongue (and soon to be Nova Scotia's provincial first language). They are the people of the sea and the original inhabitants of Atlantic Canada having lived here for more than 10,000 years.
The L'nu were the first First Nation people to establish contact and trade with European explorers in the 16th and 17th centuries — and perhaps the Norse as early as the turn of the Millenium. Sailing vessels filled with French, British, Scottish, Irish and others arrived one by one to lay claim to the region — settling and fighting over the land. As each group rolled out their machinations of discovery, tensions turned to an all-out war with the British and French going head to head. I'll spare you the sordid details but for everyone caught in the crossfire, it went poorly.
North America Map 1775 (Click to Enlarge) |
The bittersweet British victory sparked the American War of Independence.
For the next twenty years, the L'nu would witness and become embroiled in yet another war for these lands, their lands — first as bystanders, then as American allies, then intimidated into submission by the British Royal Navy with a show of force by way of a thirty-four gun man-of-war, encouraging L'nu compliance — finally culminating in an end to the hostilities with the 1783 Treaty of Paris.
The peace accord held no provisions for the L'nu, Métis and First Nations impacted. None of these newcomers was Mi'kmaq — neither friends nor allies.
It was to this area some sixty years later that the newly formed Geological Survey of Canada (GSC) began exploring and mapping the newly formed United Province of Canada. Geologists in the New Brunswick Geology Branch traipsed through the rugged countryside that would become a Canadian province in 1867.
It was on one of these expeditions that the Miguasha fossil outcrops were discovered. They, too, would transform in time to become Miguasha National Park or Parc de Miguasha, but at first, they were simply the promising sedimentary exposures on the hillside across the water — a treasure trove of Late Devonian fauna waiting to be discovered.
In the summer of 1842, Abraham Gesner, New Brunswick’s first Provincial Geologist, crossed the northern part of the region exploring for coal. Well, mostly looking for coal. Gesner also had a keen eye for fossils and his trip to the Gaspé Peninsula came fast on the heels of a jaunt along the rocky beaches of Chignecto Bay at the head of the Bay of Fundy and home to the standing fossil trees of the Joggins Fossil Cliffs.
Passionate about geology and chemistry, he is perhaps most famous for his invention of the process to distil the combustible hydrocarbon kerosene from coal oil — a subject on which his long walks exploring a budding Canada gave him a great deal of time to consider. We have Gesner to thank for the modern petroleum industry. He filed many patents for clever ways to distil the soft tar-like coal or bitumen still in use today.
He was skilled in a broad range of scientific disciplines — being a geologist, palaeontologist, physician, chemist, anatomist and naturalist — a brass tacks geek to his core. Gesner explored the coal exposures and fossil outcrops across the famed area that witnessed the region become part of England and not France — and no longer L'nu.
Following the Restigouche River in New Brunswick through the Dalhousie region, Gesner navigated through the estuary to reach the southern coast of the Gaspé Peninsula into what would become the southeastern coast of Quebec to get a better look at the cliffs across the water. He was the first geologist to lay eyes on the Escuminac Formation and its fossils.
In his 1843 report to the Geologic Survey, he wrote, “...I found the shore lined with a coarse conglomerate. Farther eastward the rocks are light blue sandstones and shales, containing the remains of vegetables. (...) In these sandstone and shales, I found the remains of fish and a small species of tortoise with fossil foot-marks.”
We now know that this little tortoise was the famous Bothriolepis, an antiarch placoderm fish. It was also the first formal mention of the Miguasha fauna in our scientific literature. Despite the circulation of his report, Gesner’s discovery was all but ignored — the cliffs and their fossil bounty abandoned for decades to come. Geologists like Ells, Foord and Weston, and the research of Whiteaves and Dawson, would eventually follow in Gesner's footsteps.
North America Map 1866 (Click to Enlarge) |
This is exciting as it is the lobe-finned fishes — the sarcopterygians — that gave rise to the first four-legged, air-breathing terrestrial vertebrates – the tetrapods.
Fossil specimens from Miguasha include twenty species of lower vertebrates — anaspids, osteostra-cans, placoderms, acanthodians, actinopterygians and sarcopterygians — plus a limited invertebrate assemblage, along with terrestrial plants, scorpions and millipedes.
Originally interpreted as a freshwater lacustrine environment, recent paleontological, taphonomic, sedimentological and geochemical evidence corroborates a brackish estuarine setting — and definitely not the deep waters of the sea. This is important because the species that gave rise to our land-living animals began life in shallow streams and lakes. It tells us a bit about how our dear Elpistostege watsoni liked to live — preferring to lollygag in cool river waters where seawater mixed with fresh. Not fully freshwater, but a wee bit of salinity to add flavour.
- Photos: Elpistostege watsoni (Westoll, 1938 ), Upper Devonian (Frasnian), Escuminac formation, Parc de Miguasha, Baie des Chaleurs, Gaspé, Québec, Canada. John Fam, VanPS
- Origin of the Vertebrate Hand Illustration, https://www.nature.com/articles/s41586-020-2100-8
- Tiktaalik Illustration: By Obsidian Soul - Own work, CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=47401797
References & further reading:
- From Water to Land: https://www.miguasha.ca/mig-en/the_first_discoveries.php
- UNESCO Miguasha National Park: https://whc.unesco.org/en/list/686/
- Office of L'nu Affairs: https://novascotia.ca/abor/aboriginal-people/
- Cloutier, R., Clement, A.M., Lee, M.S.Y. et al. Elpistostege and the origin of the vertebrate hand. Nature 579, 549–554 (2020). https://doi.org/10.1038/s41586-020-2100-8
- Daeschler, E. B., Shubin, N. H. & Jenkins, F. A. Jr. A Devonian tetrapod-like fish and the evolution of the tetrapod body plan. Nature 440, 757–763 (2006).
- Shubin, Neil. Your Inner Fish: A Journey into the 3.5 Billion History of the Human Body.
- Evidence for European presence in the Americas in AD 1021: https://www.nature.com/articles/s41586-021-03972-8
Saturday, September 24, 2022
OYSTER: TLOXTLOX
While rare today, these are British Columbia’s only native oyster. Had you been dining on their brethren in the 1800s or earlier, it would have been this species you were consuming. Middens from Port Hardy to California are built from Ostrea lurida.
These wonderful invertebrates bare their souls with every bite. Have they lived in cold water, deep beneath the sea away from the suns rays and heat? Are they the rough and tumbled beach denizens whose thick shells have formed to withstand the pounding of the sea?
Is the oyster in your mouth thin and slimy having just done the nasty spurred by the warming waters of Spring? Is this oyster a local or was it shipped to your current local and if asked would greet you with "Kon'nichiwa?" Not if the beauty on your plate is indeed Ostrea lurida.
We have been cultivating, indeed maximizing the influx of invasive species to the cold waters of the Salish Sea. But in the wild waters off the coast of British Columbia is the last natural abundant habitat of the tasty Ostrea lurida in the pristine waters of Nootka Sound. The area is home to the Nuu-chah-nulth First Nations who have consumed this species boiled or steamed for thousands of years. Here these ancient oysters not only survive but thrive — building reefs and providing habitat for crab, anemones and small marine animals.
Oysters are in the family Ostreidae — the true oysters. Their lineage evolved in the Early Triassic — 251 - 247 million years ago.
In the Kwak̓wala language of the Kwakiutl or Kwakwaka'wakw, speakers of Kwak'wala, of the Pacific Northwest, an oyster is known as t̕łox̱t̕łox̱. I am curious to learn if any of the Nuu-chah-nulth have a different word for an oyster. If you happen to know, I would be grateful to learn.
Friday, September 23, 2022
EIGHTH WONDER OF THE ANCIENT WORLD: METASEQUOIA
Dawn Redwood Cones with scales paired in opposite rows |
The seed-bearing cones of Metasequoia have a stalk at their base and the scales are arranged in paired opposite rows which you can see quite well in the visual above. Coast redwood cone scales are arranged in a spiral and lack a stalk at their base.
Although the least tall of the redwoods, it grows to an impressive sixty meters (200 feet) in height. It is sometimes called Shui-sa, or water fir by those who live in the secluded mountainous region of China where it was rediscovered.
Fossil Metasequoia, McAbee Fossil Beds |
During the Paleocene and Eocene, extensive forests of Metasequoia thrived as far north as Strathcona Fiord on Ellesmere Island and sites on Axel Heiberg Island in Canada's far north around 80° N latitude.
We find lovely examples of Metasequoia occidentalis in the Eocene outcrops at McAbee near Cache Creek, British Columbia, Canada. I shared a photo here of one of those specimens. Once this piece dries out a bit, I will take a dental pick to it to reveal some of the teaser fossils peeking out.
The McAbee Fossil Beds are known for their incredible abundance, diversity and quality of fossils including lovely plant, insect and fish species that lived in an old lake bed setting. While the Metasequoia and other fossils found here are 52-53 million years old, the genus is much older. It is quite remarkable that both their fossil and extant lineage were discovered in just a few years of one another.
Metasequoia was first described as a new genus from a fossil specimen found in 1939 and published by Japanese paleobotanist Shigeru Miki in 1941. Remarkably, the living version of this new genus was discovered later that same year.
Professor Zhan Wang, an official from the Bureau of Forest Research was recovering from malaria at an old school chum's home in central China. His friend told him of a stand of trees discovered in the winter of 1941 by Chinese botanist Toh Gan (干铎). The trees were not far away from where they were staying and Gan's winter visit meant he did not collect any specimen as the trees had lost their leaves.
The locals called the trees Shui-sa, or water fir. As trees go, they were reportedly quite impressive with some growing as much as sixty feet tall. Wang was excited by the possibility of finding a new species and asked his friend to describe the trees and their needles in detail. Emboldened by the tale, Wang set off through the remote mountains to search for his mysterious trees and found them deep in the heart of Modaoxi (磨刀溪; now renamed Moudao (谋道), in Lichuan County, in the central China province of Hubei. He found the trees and was able to collect living specimens but initially thought they were from Glyptostrobus pensilis (水松).
A few years later, Wang showed the trees to botanist Wan-Chun Cheng and learned that these were not the leaves of s Glyptostrobus pensilis (水松 ) but belonged to a new species.
While the find was exciting, it was overshadowed by China's ongoing conflict with the Japanese that was continuing to escalate. With war at hand, Wang's research funding and science focus needed to be set aside for another two years as he fled the bombing of Beijing.
When you live in a world without war on home soil it is easy to forget the realities for those who grew up in it.Zhan Wang and his family lived to witness the 1931 invasion of Manchuria, then the 1937 clash between Chinese and Japanese troops at the Marco Polo Bridge, just outside Beijing.
That clash sparked an all-out war that would grow in ferocity to become World War II.
Within a year, the Chinese military situation was dire. Most of eastern China lay in Japanese hands: Shanghai, Nanjing, Beijing, Wuhan. As the Japanese advanced, they left a devastated population in their path where atrocity after atrocity was the norm. Many outside observers assumed that China could not hold out, and the most likely scenario was a Japanese victory over China.
Yet the Chinese hung on, and after the horrors of Pearl Harbor, the war became genuinely global. The western Allies and China were now united in their war against Japan, a conflict that would finally end on September 2, 1945, after Allied naval forces blockaded Japan and subjected the island nation to intensive bombing, including the utter devastation that was the Enola Gay's atomic payload over Hiroshima.
With World War II behind them, the Chinese researchers were able to re-focus their energies on the sciences. Sadly, Wang was not able to join them. Instead, two of his colleagues, Wan Chun Cheng and Hu Hsen Hsu, the director of Fan Memorial Institute of Biology would continue the work. Wan-Chun Cheng sent specimens to Hu Hsen Hsu and upon examination realised they were the living version of the trees Miki had published upon in 1941.
Hu and Cheng published a paper describing a new living species of Metasequoia in May 1948 in the Bulletin of Fan Memorial Institute of Biology.
That same year, Arnold Arboretum of Harvard University sent an expedition to collect seeds and, soon after, seedling trees were distributed to various universities and arboreta worldwide.
Today, Metasequoia grow around the globe. When I see them, I think of Wang and all he went through. He survived the conflict and went on to teach other bright, young minds about the bountiful flora in China. I think of Wan Chun Cheng collaborating with Hu Hsen Hsu in a time of war and of Hu keeping up to date on scientific research, even published works from colleagues from countries with whom his country was at war. Deep in my belly, I ache for the huge cost to science, research and all the species impacted on the planet from our human conflicts. Each year in April, I plant more Metasequoia to celebrate Earth Day and all that means for every living thing on this big blue orb.
References:
- https://web.stanford.edu/group/humbioresearch/cgi-bin/wordpress/?p=297
- https://humboldtredwoods.org/redwoods
Thursday, September 22, 2022
MIGHTY KWIKW: BALD EAGLE
Bald Eagle / Kwikw / Haliaeetus leucocephalus |
Wednesday, September 21, 2022
VELOCIRAPTOR VERSUS MAMMAL
Velociraptors were smallish dinosaurs around 2 meters or 6 feet in length. Even so, this 45-kilogram or 100-pound carnivore was an impressive hunter.
They ran on two very speedy back legs to catch and dine on reptiles, amphibians, insects, small dinosaurs and mammals.
Tuesday, September 20, 2022
OUR GREAT BEARS: URSAVUS TO NAN
GREAT BEAR NA̱N |
Both bear families descend from a common ancestor, Ursavus, a bear-dog the size of a raccoon who lived more than 20 million years ago. Seems an implausible lineage given the size of their very large descendants.
An average Grizzly weighs in around 800 lbs (363 kg), but a recent find in Alaska tops the charts at 1600 lbs (726 kg).
This mighty beast stood 12' 6' high at the shoulder, 14' to the top of his head and is one of the largest grizzlies ever recorded — a na̱ndzi.
Adult bears tend to live solo except during mating season. Those looking for love congregate from May to July in the hopes of finding a mate. Through adaptation to shifting seasons, the females' reproductive system delays the implantation of fertilized eggs — blastocysts —until November or December to ensure her healthy pups arrive during hibernation. If food resources were slim that year, the newly formed embryo will not catch or attach itself to her uterine wall and she'll try again next year.
Females reach mating maturity at 4-5 years of age. They give birth to a single or up to four cubs (though usually just two) in January or February. The newborn cubs are cute little nuggets — tiny, hairless, and helpless — weighing in at 2-3 kilograms or 4-8 pounds. They feast on their mother’s nutrient-dense milk for the first two months of life. The cubs stay with their mamma for 18 months or more. Once fully grown, they can run 56 km an hour, are good at climbing trees and swimming and live 20-25 years in the wild.
First Nation Lore and Language
In the Kwak'wala language of the Kwakiutl First Nations of the Pacific Northwest — or Kwakwaka'wakw, speakers of Kwak'wala — a Grizzly bear is known as na̱n.
The ornamental carved Grizzly bear headdress was worn by the comic Dluwalakha Grizzly Bear Dancers, Once more from Heaven, in the Grizzly Bear Dance or Gaga̱lalał, is known as na̱ng̱a̱mł.
The Dluwalakha dancers were given supernatural treasures or dloogwi which they passed down from generation to generation.
In the Hamat'sa Grizzly bear dance, Nanes Bakbakwalanooksiwae, no mask was worn. Instead, the dancers painted their faces red and wore a costume of bearskin or t̓ła̱ntsa̱m and long wooden claws attached to their hands. You can imagine how impressive that sight is lit by the warm flickering flames of firelight during a Winter Dance ceremony.
Smoke of the World / Speaking of the Ancestors — Na̱wiła
Kwaguʼł Winter Dancers — Qagyuhl |
To tell stories of the ancestors is na̱wiła. Each of these ancestors took off their masks to become human and founded the many groups that are now bound together by language and culture as Kwakwaka’wakw.
The four First Nations who collectively make up the Kwakiutl are the Kwakiutl (Kwágu7lh), K’umk’utis/Komkiutis, Kwixa/Kweeha (Komoyoi) and Walas Kwakiutl (Lakwilala) First Nations.
There is likely blood of the Lawit’sis in there, too, as they inhabited the village site at Tsax̱is/T'sakis, Fort Rupert before the Kwakiutl First Nations made it a permanent home. It was here that I grew up and learned to greet my ancestors.
Not all Kwakwaka'wakw dance the Gaga̱lalał, but their ancestors likely attended feasts where the great bear was celebrated. To speak or tell stories of the ancestors is na̱wiła — and Grizzly bear as an ancestor is na̱n helus.
Visiting British Columbia's Great Bears
If you are interested in viewing British Columbia's Great Bears, do check out Indigenous Tourism BC's wonderfully informative website and the culturally-rich wildlife experiences on offer. You will discover travel ideas and resources to plan your next soul-powered adventure. To learn more about British Columbia's Great Bears and the continuing legacy of First Nation stewardship, visit:
Indigenous Tourism BC: https://www.indigenousbc.com
Great Bear Lodge has been offering tours to view the majestic animals of the Pacific Northwest. They keep both the guests' and the animals' comfort and protection in mind. I highly recommend their hospitality and expertise. To see their offerings, visit: www.greatbeartours.com
Image: Group of Winter Dancers--Qagyuhl; Curtis, Edward S., 1868-1952, https://lccn.loc.gov/2003652753.
Note: The Qagyuhl in the title of this photograph refers to the First Nation group, not the dancers themselves. I think our dear Edward was trying to spell Kwaguʼł and came as close as he was able. In Kwak'wala, the language of the Kwaguʼł or Kwakwakaʼwakw, speakers of Kwak'wala, the Head Winter Dancer is called t̕seḵa̱me' — and to call someone a really good dancer, you would use ya̱'winux̱w.
Charmingly, when Edward S. Curtis was visiting Tsaxis/T'sakis, he was challenged to a wrestling competition with a Giant Pacific Octopus, Enteroctopus dofleini. George Hunt (1854-1933) my great great grandfather's elder brother had issued the challenge and laughed himself senseless when Edward got himself completely wrapped up in tentacles and was unable to move. Edward was soon untangled and went on to take many more photos of the First Nations of the Pacific Northwest. Things did not go as well for the octopus or ta̱ḵ̕wa. It was later served for dinner or dzaḵwax̱stala, as it seemed calamari was destined for that night's menu.
Monday, September 19, 2022
DIPPY RETURNS TO THE NATURAL HISTORY MUSEUM UK
In 1905 a cast of a Diplodocus skeleton was donated to the Museum by the wealthy businessman Andrew Carnegie, based on the original specimen in the Carnegie Museum in the USA.
King Edward VII had requested a copy of the newly discovered dinosaur after seeing a picture of it in Carnegie's Scottish castle. From 1979 to early 2017 the cast - known affectionately as Dippy - was on display in the Museum's Hintze Hall.
In 1993, Dippy's tail was lifted from the ground after research revealed that Diplodocus tails would have been raised high to balance the neck.
Every two years or so, Museum experts used specialist equipment to clean the 292 bones that makeup Dippy. It takes two staff members two days to clean the cast and make sure it is maintained for future generations to enjoy.
Dippy left the Museum in 2017 to complete a whirlwind tour of the UK. Throughout his journey, Dippy witnessed the changing state of nature and how the UK's biodiversity is in sharp decline. The famous cast is now back visiting the Museum until Christmas 2022.
Diplodocus had a long neck that it would have used to reach high and low vegetation and to drink water. There has been some debate over how such a long neck would have been held.
Scientists now think that ligaments running from the hip to the back of the neck would have allowed Diplodocus to hold its neck in a horizontal position without using muscles. The vertebrae (back bones) are split down the middle and this space could have held ligaments like these. Diplodocus may have had narrow, pointed bony spines lining its back.
Sunday, September 18, 2022
DARWIN'S TOXODON
Toxodon is an extinct large grazing mammal. The first Toxodon fossils were discovered by Charles Darwin on his visit to South America as part of his voyage on the HMS Beagle.
Darwin wondered at the fossil's strange appearance as it seemed to share features with both rodents and rhinos.
“Toxodon is perhaps one of the strangest animals ever discovered,” wrote Darwin. He first encountered the creature in Uruguay on November 26th, 1834.
“Having heard of some giant’s bones at a neighbouring farm-house…, I rode there accompanied by my host, and purchased for the value of eighteen pence the head of the Toxodon.”
The beast’s skeleton, once fully assembled, was a baffling mish-mash of traits. It was huge like a rhino, but it had the chiselling incisors of a rodent—its name means “arched tooth”—and the high-placed eyes and nostrils of a manatee or some other aquatic mammal. “How wonderfully are the different orders, at present time so well separated, blended together in different points of the structure of the toxodon!”
Although Toxodon is not related to rodents, in 2015, it was discovered to be distantly related to rhinoceros.
Saturday, September 17, 2022
SWEDISH NAUTILOID: LITUITES
This piece is from a locomotive shove Tim Haye found about 30 years ago.
Lituites is an extinct nautiloid genus from the Middle Ordovician and type for the Lituitidae (a tarphyceratid family) that in some more recent taxonomies has been classified with the orthocerids and listed under the order Lituitida. Fossils have been found in New York, Argentina, Norway, Sweden, Estonia, and China.
Lituites produced a shell with a planospirally coiled juvenile portion at the apex, reflective of its tarphyceratid ancestry, followed by a long, moderately expanding, generally straight, orthoconic adult section with a subdorsal siphuncle connecting the chambers. The adult body chamber may equal or exceed the length of the chambered part of the orthoconic section. The mature aperture has a pair of pronounced ventrolateral lappets and a similar but shorter pair of dorsolateral lappets.
Lituites gives its name to the term "lituiticone" which refers to a shell that is coiled in the early growth stage and later becomes uncoiled. This is a particularly lovely specimen found by my friend Tim on a fossil field trip when he was just a young lad. I associate this nautiloid with the wee gnomes we set out over the winter holidays. Once you see it, you cannot unsee it. Enjoy!
References:
- Flower & Kummel, 1950. A Classification of the Nautiloidia. Jour Paleontology, V.24, N.5, pp 604–616, Sept
- Furnish & Glenister, 1964, Nautiloidea -Tarphycerida. Treatise on Invertebrate Paleontology Part K... Nautiloidea
- Mutvei, H. 2002. Connecting ring structure and its significance for classification of the orthoceratid cephalopods. Acta Palaeontologica Polonica 47 (1): 157–168.
Friday, September 16, 2022
MEET ACICULOLENUS ASKEWI AFTER DON ASKEW
The Dream Team at Fossil Site #15, East Kootenays |
Chris New, pleased as punch atop Upper Cambrian Exposures |
Thursday, September 15, 2022
ETHELDRED'S HOPLITES
Hoplites (Hoplites) bennettiana (Sowerby, 1826) |
The species name is a homage to Etheldred Benett, an early English geologist often credited with being the first female geologist — a fossil collector par excellence.
She was also credited with being a man — the Natural History Society of Moscow awarding her membership as Master Etheldredus Benett in 1836. The confusion over her name — it did sound masculine — came again with the bestowing of a Doctorate of Civil Law from Tsar Nicholas I.
The Tsar had read Sowerby's Mineral Conchology, a major fossil reference work that contained the second-highest number of contributed fossils of the day, many of the best quality available at the time. Forty-one of those specimens were credited to Benett. Between her name and this wonderous contribution to a growing science, the Russian Tsar awarded the Doctorate to what he believed was a young male scientist on the rise. He believed in education, founding Kyiv University in 1834, just not for women. He was an autocratic military man frozen in time — the thought that this work could have been done by a female unthinkable. Doubly charming is that the honour from the University of St Petersburg was granted at a time when women were not allowed to attend St. Pete's or any higher institutions. That privilege arrived in 1878, twenty years after Nicholas I's death.
Benett took these honours (and social blunders) with grace. She devoted her life to collecting and studying fossils from the southwest of England, amassing an impressive personal collection she openly shared with geologist friends, colleagues and visitors to her home. Her speciality was fossils from the Middle Cretaceous, Upper Greensand in the Vale of Wardour — a valley in the county of Wiltshire near the River Nadder.
Etheldred Benett was born on 22 July 1775 at Pyt House, Tisbury, Wiltshire, the eldest daughter of the local squire Thomas Benett.
Etheldred's interest was cultivated by the botanist Aylmer Bourke Lambert (1761-1842), a founding member of the Linnean Society. Benett's brother had married Lucy Lambert, Aylmer's half-sister. Aylmer was a Fellow of the Royal Society and the Society of the Arts. He was also an avid fossil collector and member of the Geological Society of London. The two met and got on famously.
Aylmer kindled an interest in natural history in both of Benett's daughters. Etheldred had a great fondness for geology, stratigraphy and all things paleo, whilst her sister concentrated on botany. Etheldred had a distinct advantage over her near contemporary, the working-class Mary Anning (1799-1847), in that Benett was a woman of independent wealth who never married — and didn't need to — who could pursue the acquisition and study of fossils for her own interest.
While Anning was the marine reptile darling of the age, she was also greatly hindered by her finances. "She sells, seashells by the seashore..." while chanted in a playful spirit today, was not meant kindly at the time.
Aylmer's encouragement emboldened Etheldred to go into the field to collect for herself — and collect she did. Profusely.
Benett’s contribution to the early history of Wiltshire geology is significant. She corresponded extensively with the coterie of gentlemen scientists of the day — Gideon Mantell, William Buckland, James Sowerby, George Bellas Greenough and, Samuel Woodward. She also consorted with the lay folk and had an ongoing correspondence with William Smith, whose stratigraphy work had made a favourable impression on her brother-in-law, Aylmer.
Her collections and collaboration with geologists of the day were instrumental in helping to form the field of geology as a science. One colleague and friend, Gideon Mantell, British physician, geologist and palaeontologist, who discovered four of the five genera of dinosaurs and Iguanadon, was so inspired by Benett's work he named this Cretaceous ammonite after her — Hoplites bennettiana.
Benett's fossil assemblage was a valuable resource for her contemporaries and remains so today. It contains thousands of Jurassic and Cretaceous fossil specimens from the Wiltshire area and the Dorset Coast, including a myriad of first recorded finds. The scientific name of every taxon is usually based on one particular specimen, or in some cases multiple specimens. Many of the specimens she collected serve as the Type Specimen for new species.
Fossil Sponge, Polypothecia quadriloba, Warminster, Wiltshire |
To ensure the knowledge was shared in a timely fashion, she finally wrote them up and published them herself. You can read her findings in her publication, ‘A Catalogue of Organic Remains of the County of Wiltshire’ (1831), where she shares observations on the fossil sponge specimens and other invert goodies from the outcrops west of town.
She shared her ideas freely and donated many specimens to local museums. It was through her exchange of observations, new ideas and open sharing of fossils with Gideon Mantell and others that we gained a clearer understanding of the Lower Cretaceous sedimentary rocks of Southern England.
In many ways, Mantell was drawn to Benett as his ideas went against majority opinion. At a time when marine reptiles were dominating scientific discoveries and discussions, he pushed the view that dinosaurs were terrestrial, not amphibious, and sometimes bipedal. Mantell's life's work established the now-familiar idea that the Age of Reptiles preceded the Age of Mammals. Mantell kept a journal from 1819-1852, that remained unpublished until 1940 when E. Cecil Curwen published an abridged version. (Oxford University Press 1940). John A. Cooper, Royal Pavilion and Museums, Brighton and Hove, published the work in its entirety in 2010.
I was elated to get a copy, both to untangle the history of the time and to better learn about the relationship between Mantell and Benett. So much of our geologic past has been revealed since Mantell's first entry two hundred years ago. The first encounter we share with the two of them is a short note from March 8, 1819. "This morning I received a letter from Miss Bennett of Norton House near Warminster Wilts, informing me of her having sent a packet of fossils for me, to the Waggon Office..." The diary records his life and the social interactions of the small connected community of the scientific social elite — pure delight.
Though a woman in a newly evolving field, her work, dedication and ideas were recognized and appreciated by her colleagues. Gideon Mantell described her as, "a lady of great talent and indefatigable research," whilst the Sowerbys noted her, "labours in the pursuit of geological information have been as useful as they have been incessant."
Benett produced the first measured sections of the Upper Chicksgrove quarry near Tisbury in 1819, published and shared with local colleagues as, "the measure of different beds of stone in Chicksgrove Quarry in the Parish of Tisbury.” The stratigraphic section was later published by naturalist James Sowerby without her knowledge. Her research contradicted many of Sowerby’s conclusions.
She wrote and privately published a monograph in 1831, containing many of her drawings and sketches of molluscs and sponges. Her work included sketches of fossil Alcyonia (1816) from the Green Sand Formation at Warminster Common and the immediate vicinity of Warminster in Wiltshire.
Echinoids and Bivalves. Collection of Etheldred Benett (1775-1845) |
If you'd like to read a lovely tale on William's work, check out the Map that Changed the World: William Smith and the Birth of Modern Geology by Simon Winchester. It narrates the intellectual context of the time, the development of Smith's ideas and how they contributed to the theory of evolution and more generally to a dawning realization of the true age of the earth.
The book describes the social, economic or industrial context for Smith's insights and work, such as the importance of coal mining and the transport of coal by means of canals, both of which were a stimulus to the study of geology and the means whereby Smith supported his research. Benett debated many of the ideas Smith put forward. She was luckier than Smith financially, coming from a wealthy family, a financial perk that allowed her the freedom to add fossils to her curiosity cabinet at will.
Most of her impressive collection was assumed lost in the early 20th century. It was later found and purchased by an American, Thomas Bellerby Wilson, who donated it to the Academy of Natural Sciences of Philadelphia. Bits of her collection made their way into British museums. Leeds City Museum, the British Museum in London, Bristol Museum and the University of St. Petersburg all house her specimens. These collections contain many of the first fossils found of their kind — some with the soft tissues preserved. When Benett died in 1845, it was Mantell who penned her obituary for the London Geological Journal.
Etheldred Benett (1776-1845) |
Her renown lives on through her collections, her collaborations and through the beautiful 110 million-year-old ammonite you see here, Hoplites bennettiana. The lovely example you see here is in the collection of the deeply awesome Christophe Marot.
Spamer, Earle E.; Bogan, Arthur E.; Torrens, Hugh S. (1989). "Recovery of the Etheldred Benett Collection of fossils mostly from Jurassic-Cretaceous strata of Wiltshire, England, analysis of the taxonomic nomenclature of Benett (1831), and notes and figures of type specimens contained in the collection". Proceedings of the Academy of Natural Sciences of Philadelphia. 141. pp. 115–180. JSTOR 4064955.
Torrens, H. S.; Benamy, Elana; Daeschler, E.; Spamer, E.; Bogan, A. (2000). "Etheldred Benett of Wiltshire, England, the First Lady Geologist: Her Fossil Collection in the Academy of Natural Sciences of Philadelphia, and the Rediscovery of "Lost" Specimens of Jurassic Trigoniidae (Mollusca: Bivalvia) with Their Soft Anatomy Preserved.". Proceedings of the Academy of Natural Sciences of Philadelphia. 150. pp. 59–123. JSTOR 4064955.
Photo credit: Fossils from Wiltshire. In the foreground are three examples of the echinoid, Cidaris crenularis, from Calne, a town in Wiltshire, southwestern England, with bivalves behind. Caroline Lam, Archivist at the Geological Society, London, UK. http://britgeodata.blogspot.com/2016/03/etheldred-benett-first-female-geologist_30.html
Photo credit: Fossil sponges Polypothecia quadriloba, from Warminster, Wiltshire. The genus labels are Benett’s, as is the handwriting indicating the species. The small number, 20812, is the Society’s original accession label from which we can tell that the specimen was received in April 1824. The tablet onto which the fossils were glued is from the Society’s old Museum.
https://www.strangescience.net/ebenett.htm
Wednesday, September 14, 2022
ROYAL PURPLE DYE IN HISTORY
Associated since antiquity with regality, luxuriance, and the loftiness of intellectual and spiritual ideals, purple was, for many millennia, chiefly distilled from a dehydrated mucous gland of mollusks that lies just behind the rectum: the bottom of the bottom-feeders.
That insalubrious process, undertaken since at least the 16th Century BC (and perhaps first in Phoenicia, a name that means, literally, ‘purple land’), was notoriously malodorous and required an impervious sniffer and a strong stomach.
Though purple may have symbolised a higher order, it reeked of a lower ordure.
To make the lovely blue and purple dyes, we harvest the plants and ferment them in vats with urine and ash. The fermentation splits off the glucose, a wee bit of oxygen mixes in with the air (with those sturdy legs helping) and we get indigotin — the happy luxury dye of royalty, emperors and kings.
While much of our early dye came from plants — now it is mostly synthesized — other critters played a role. Members of the large and varied taxonomic family of predatory sea snails, marine gastropod mollusks, commonly known as murex snails were harvested by the Phoenicians for the vivid dye known as Tyrian purple.
While the extant specimens maintained their royal lineage for quite some time; at least until we were able to manufacture synthetic dyes, it was their fossil brethren that first captured my attention. There are about 1,200 fossil species in the family Muricidae. They first appear in the fossil record during the Aptian of the Cretaceous.
Their ornate shells fossilize beautifully. I'd first read about them in Addicott's Miocene Gastropods and Biostratigraphy of the Kern River Area, California. It's a wonderful survey of 182 early and middle Miocene gastropod taxa.
Tuesday, September 13, 2022
CEPHALOPOD BOUNTY FROM HORNBY ISLAND
Diplomoceras sp. |